Дестабилизирующие белки функции. Классификация белков

💖 Нравится? Поделись с друзьями ссылкой

Еще значения слова и перевод СПИРАЛЬ-ДЕСТАБИЛИЗИРУЮЩИЕ БЕЛКИ с английского на русский язык в англо-русских словарях.
Что такое и перевод СПИРАЛЬ-ДЕСТАБИЛИЗИРУЮЩИЕ БЕЛКИ с русского на английский язык в русско-английских словарях.

More meanings of this word and English-Russian, Russian-English translations for СПИРАЛЬ-ДЕСТАБИЛИЗИРУЮЩИЕ БЕЛКИ in dictionaries.

  • СПИРАЛЬ — f. spiral, helix; спираль Архимеда, spiral of Archimedes; si-ci-спираль, si-ci spiral, Nielsen"s spiral
    Russian-English Dictionary of the Mathematical Sciences
  • СПИРАЛЬ — Spiral
  • БЕЛКИ — Protein
    Русско-Американский Английский словарь
  • СПИРАЛЬ — spiral спиралью, по спирали — in a spiral
  • СПИРАЛЬ
    Русско-Английский словарь общей тематики
  • СПИРАЛЬ — 1) цитол. coil 2) helix 3) spiral 4) spire
    Новый Русско-Английский биологический словарь
  • БЕЛКИ — Fibers
    Russian Learner"s Dictionary
  • СПИРАЛЬ — spiral
    Russian Learner"s Dictionary
  • СПИРАЛЬ
    Русско-Английский словарь
  • СПИРАЛЬ — ж. spiral спиралью, по спирали — in a spiral
    Russian-English Smirnitsky abbreviations dictionary
  • СПИРАЛЬ — spiral
    Russian-English Edic
  • СПИРАЛЬ — coil, curl, helix, spiral line, snail, spiral
    Русско-Английский словарь по машиностроению и автоматизации производства
  • СПИРАЛЬ
    Русско-Английский краткий словарь по общей лексике
  • СПИРАЛЬ — coil, helix, scroll, winding, spiral, volute
    Русско-Английский словарь по строительству и новым строительным технологиям
  • СПИРАЛЬ — Spiral
  • БЕЛКИ — Protein
    Британский Русско-Английский словарь
  • БЕЛКИ — (блат.) деньги
  • БЕЛКИ — Деньги
    Англо-Русско-Английский словарь сленга, жаргона, русских имен
  • СПИРАЛЬ — spiral; (пружина) spiral spring; ~ый spiral; ~ная линия spiral; ~ная пружина spiral/coil spring
    Русско-Английский словарь - QD
  • СПИРАЛЬ — см. двигаться по спирали
    Русско-Английский научно-технический словарь переводчика
  • БЕЛКИ — БЕЛКИ Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же …
    Русский словарь Colier
  • БЕЛКИ — БЕЛКИ Белки в твердом состоянии белого цвета, а в растворе бесцветны, если только они не несут какой-нибудь хромофорной (окрашенной) группы, …
    Русский словарь Colier
  • БЕЛКИ — БЕЛКИ Строение. Белки - это полимеры, т.е. молекулы, построенные, как цепи, из повторяющихся мономерных звеньев, или субъединиц, роль которых играют …
    Русский словарь Colier
  • БЕЛКИ — БЕЛКИ Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, …
    Русский словарь Colier
  • БЕЛКИ — (протеины), класс сложных азотсодержащих соединений, наиболее характерных и важных (наряду с нуклеиновыми кислотами) компонентов живого вещества. Белки выполняют многочисленные и …
    Русский словарь Colier
  • СПИРАЛЬ — ж. helix
    Русско-Aнглийский автомобильный словарь
  • СПИРАЛЬ
    Большой Русско-Английский словарь
  • СПИРАЛЬ — спираль spiral
    Русско-Английский словарь Сократ
  • WHISK — 1. сущ. метел(оч)ка; сбивалка (напр., для яиц) egg whisk ≈ веничек для взбивания яиц 2. гл. 1) смахивать, сгонять (часто …
  • WHIP — 1. сущ. 1) а) кнут, хлыст to crack, snap a whip ≈ щелкать кнутом/хлыстом б) обметка (петель и т. п.) …
    Большой Англо-Русский словарь
  • VOLUTE — 1. сущ. 1) спираль 2) архит. волюта; завиток (архитектурная особенность ионического стиля) 3) зоол. спиралевидная раковина брюхоногого моллюска или сам …
    Большой Англо-Русский словарь
  • SPONGE — 1. сущ. 1) а) губка б) мед. тампон (из марли и ваты) 2) а) предметы или явления, напоминающие губку: …
    Большой Англо-Русский словарь
  • SPIRE — I сущ. что-л. заостренной или конусообразной формы 1) шпиль, игла, острие 2) верхушка дерева 3) язык пламени 4) остроконечная башенка …
    Большой Англо-Русский словарь
  • SPIRAL — 1. сущ. 1) а) спираль, винтовая линия - helix spiral of Archimedes б) виток (спирали) Syn: coil I 1. …
    Большой Англо-Русский словарь
  • SNAIL — сущ. 1) улитка - snail"s pace 2) разг. а) тихоход; медлительный человек б) лежебока, лентяй Syn: sluggard 3) тех. …
    Большой Англо-Русский словарь
  • SCROLL — 1. сущ. 1) а) свиток (на котором что-л. написано); что-л. свернутое в цилиндр Syn: roll б) уст. письмо, послание …
    Большой Англо-Русский словарь
  • HELIX — сущ. 1) спираль, винтовая линия Syn: spiral 1. 2) архит. волюта, завиток Syn: volute 1. 3) анат. завиток …
    Большой Англо-Русский словарь
  • GYRE — 1. сущ. 1) поэт.; книж. круговое вращение; кружение; вихрь, вихревое движение The poet evokes an atmosphere of mystery within the …
    Большой Англо-Русский словарь
  • DISTURBING — прил. беспокоящий, волнующий It is disturbing to find evidence of widespread corruption. ≈ Свидетельства широко распространенной коррупции очень расстраивают. Syn …
    Большой Англо-Русский словарь
  • BUN — I сущ. 1) сдобная булочка с изюмом cinnamon, sticky bun ≈ булочка с корицей 2) пучок, узел (волос) She wore …
    Большой Англо-Русский словарь
  • WHIP — whip.ogg 1. wıp n 1. плеть, плётка; кнут; хлыст; розга; прут, хворостина to ride whip and spur - мчаться во …
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • SPIRAL — spiral.ogg _I 1. ʹspaı(ə)rəl n 1. спираль low spiral - передняя горизонтальная спираль «ласточка» (фигурное катание) 2. спираль, …
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • DISTURBING — disturbing.ogg dısʹtɜ:bıŋ a 1. вызывающий нарушение равновесия; возмущающий disturbing factors - дестабилизирующие факторы 2. тревожный, вызывающий беспокойство disturbing news - …
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • COIL — 1) спираль || скручивать (свёртывать) в спираль 2) виток 3) рулон (полосового материала) 4) бухта, бунт (проволоки, …
    Большой Англо-Русский политехнический словарь
  • WHIP — 1. n 1. плеть, плётка; кнут; хлыст; розга; прут, хворостина to ride ~ and spur - мчаться во весь …
  • SPIRAL — I 1. [ʹspaı(ə)rəl] n 1. спираль low ~ - передняя горизонтальная спираль «ласточка» (фигурное катание) 2. спираль, предмет …
    Новый большой Англо-Русский словарь - Апресян, Медникова
  • DISTURBING — a 1. вызывающий нарушение равновесия; возмущающий ~ factors - дестабилизирующие факторы 2. тревожный, вызывающий беспокойство ~ news - огорчительные новости
    Новый большой Англо-Русский словарь - Апресян, Медникова
  • WHIP — 1. wıp n 1. плеть, плётка; кнут; хлыст; розга; прут, хворостина to ride whip and spur - мчаться во весь …
  • SPIRAL — _I 1. ʹspaı(ə)rəl n 1. спираль low spiral - передняя горизонтальная спираль «ласточка» (фигурное катание) 2. спираль, предмет …
    Большой новый Англо-Русский словарь
  • DISTURBING — a 1. вызывающий нарушение равновесия; возмущающий disturbing factors - дестабилизирующие факторы 2. тревожный, вызывающий беспокойство disturbing news - огорчительные новости
    Большой новый Англо-Русский словарь
  • PERFORINS — каналообразующие белки, пороформирующие белки, перфорины
    Новый Англо-Русский словарь по биологии

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняют создание единой четкой их классификации на какой-либо одной основе. Белки можно классифицировать по их составу (простые, сложные), структуре (фибриллярные, глобулярные, промежуточные), функциям. Рассмотрим подробнее структурную классификацию.

Фибриллярные белки сильно вытянуты (наиболее важна вторичная структура) и выполняют структурные функции.

Глобулярные белки, которые в грубом приближении могут быть представлены в виде сфер (наиболее важной является третичная структура), принимают участие в таких специфических процессах, как катализ, транспорт, регуляция.

Кроме перечисленных выше типов белков, в организме имеются небольшие или бедные углеводородными группами полипептиды, которые могут сами по себе не иметь фиксированной структуры, но приобретать ее при взаимодействии с другими макромолекулами. Следует отметить, что данная классификация не может претендовать на полноту, так как существуют белки, которые не относятся ни к одному из этих классов. Например, миозин, который по своей структуре содержит признаки и фибриллярного и глобулярного белка.

Белок с исходной, природной укладкой цепи, т. е. имеющий трехмерную конфигурацию, называется нативным, белок с развернутой, беспорядочной укладкой цепи - денатурированньш. Превращение нативного белка в денатурированный, т. е. утрата белком его трехмерной конфигурации, называется денатурацией (рис. 3.15). Вызывать денатурацию могут разнообразные факторы. В частности, плотная укладка цепи белка обычно нарушается при нагревании. Тепловая денатурация - общее свойство белков. После денатурации биологически активный белок может самопроизвольно свернуться в исходную конформацию с восстановлением своей активности. Процесс сворачивания денатурированного белка называется ренатурацией.


Рис. 3.15. Денатурация белковой молекулы:

а - исходное состояние; б - начинающееся обратимое нарушение молекулярной структуры; в - необратимое развертывание полипептидной цепи

При длительном воздействии денатурирующего агента (температуры, химического вещества, среды с различным pH) денатурация становится необратимой (на рис. 3.15 этот процесс обозначен стрелкой между состояниями белковой молекулы б и в). Большинство белков денатурирует при нагревании их растворов выше 50-60 °С.

Денатурированный белок теряет способность растворяться в воде. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). Тот факт, что денатурированный белок полностью теряет свои биологические свойства, подтверждает тесную связь между структурой белковой молекулы и функцией, которую она выполняет в организме.

Способность белковой молекулы спонтанно ренатурироваться при снятии внешнего агрессивного воздействия говорит о том, что аминокислотная последовательность сама определяет пространственную структуру белка без участия какого-либо внешнего регулирующего центра.

В настоящее время денатурация и ренатурация глобулярных белков in vitro интенсивно исследуются, так как эти процессы связаны с проблемой самоорганизации белка, т. е. с вопросом о том, как белковая цепь «находит» свою уникальную структуру среди гигантского числа возможных альтернатив.

Фибриллярные белки составляют основу не растворимых в воде и прочных материалов, таких как рога, копыта, ногти, шерсть, волосы, перья, кожа, сухожилия, межклеточное вещество костной ткани. Волос - длинное достаточно прочное волокно, основой которого является белок - а-кератин. В основе сухожилий другой белок - коллаген. Эластичность и упругость стенкам артерий или легочных альвеол придает эластин. Общей особенностью этих белков является участие в формировании их пространственной структуры ковалентных непептидных связей.

Кератины волос и шерсти образуют промежуточные фила- менты, состоящие из длинных полипептидных цепей с крупными доменами, образованными а-спиралями и содержащими повторяющиеся последовательности из семи аминокислотных остатков (гептапептиды). Две направленные одинаково цепи кератина образуют суперспираль, в которой остатки неполярных аминокислот обращены внутрь и тем самым защищены от воздействия воды. Такая структура дополнительно стабилизируется многочисленными дисульфидными связями, образованными остатками цистеина соседних цепей. Суперспиральные димеры, в свою очередь, объединяются с образованием тетрамеров, подобных четырехжильному канату.

Коллаген образуется вне клеток из секретируемого ими белка - проколлагена, который превращается в коллаген в результате взаимодействия соответствующих ферментов. Молекула проколлагена представляет собой тройную суперспираль, образованную тремя скрученными вместе специализированными полипептидами. Далее при отщеплении концевых полипептидов образуется тропоколлаген, который упаковывается в коллагеновые волокна. Каждый из трех полипептидов в тропоколлагене находится в виде левосторонней спирали (в отличие от обычных правосторонних а-спиралей у белков). Примерно треть аминокислотных остатков в тропоколлагене представлена пролином, а каждый третий остаток - глицином.

В ходе образования коллагена многие остатки пролина и лизина в присутствии аскорбиновой кислоты гидроксилируются, превращаясь соответственно в гидроксипролин и гидроксилизин:


Эти остатки оказываются включенными в белок не в ходе его матричного синтеза, а в результате химического посттрансляционного превращения входящих в его состав аминокислот. Гидро- ксилирование пролина требует в качестве кофактора (небелкового компонента, необходимого для эффективной работы) аскорбиновую кислоту (витамин С), которая нужна для поддержания в восстановленном состоянии иона Fe 2+ в активном центре фермента прол ил-гидроксил азы. При недостатке витамина С нарушается образование соединительных тканей, что вызывает тяжелое заболевание - цингу.

Три спирально навитые друг на друга молекулы тропоколлаге- на ковалентно связаны между собой, образуя прочную структуру. Такая ассоциация невозможна в обычной белковой спирали, так как этому препятствуют объемные боковые цепи. В коллагене спирали более вытянуты (на один виток приходится 3 остатка, вместо 3,6), так как каждый третий аминокислотный остаток - глицин, поэтому спирали в этих точках максимально приближены друг к другу. Дополнительная стабилизация структуры осуществляется водородными связями гидроксилированных остатков лизина и пролина.

Молекулы тропоколлагена содержат около 1000 аминокислотных остатков. Они собираются в коллагеновые фибриллы, стыкуясь «голова к хвосту». Пустоты в этой структуре при необходимости могут служить местом первоначального отложения кристаллов гидроксиапатита Са 5 (0Н)(Р0 4)з, играющего важную роль в минерализации костей.

Коллаген сухожилий подвергается ферментативной модификации - в концевых частях тропоколлагеновых цепей ковалентно сшиваются остатки лизина. Таким образом, сухожилия представляют собой пучки параллельно ориентированных фибрилл. В отличие от сухожилий в коже коллагеновые фибриллы образуют подобие неупорядоченной двумерной сетки.

Эластин по своему строению отличается от коллагена и а- кератина. Он содержит обычные а-спирали, образующие поперечно-сшитую сеть, которая своей необычайно высокой эластичностью обязана уникальному способу связывания боковых цепей лизина:

четыре сближенных лизиновых остатка

формируют так называемую десмозиновую структуру, объединяющую в один узел четыре участка пептидных цепей (рис. 3.16).

Рис. 3.16. Химическая структура десмозина

Глобулярные белки. Большинство белковых молекул в организме имеет глобулярное строение. Пептидная связь в глобулярных белках в естественном состоянии свернута в компактные структуры - глобулы, которые в первом грубом приближении могут быть представлены в виде шара или не слишком вытянутого эллипсоида, в отличие от фибриллярных белков, где длинные полипептидные цепи вытянуты вдоль одной оси.

Глобулы устойчивы в водных системах вследствие того, что полярные группы основной и боковых цепей сосредоточены на поверхности, находясь в контакте с водой, а неполярные обращены в глубь молекулы и защищены от этого контакта. На поверхности белковой глобулы иногда образуются ионные связи - солевые мостики.

Оказавшиеся внутри глобулы >N-H и >С=0-группы основной цепи с образовавшимися водородными связями формируют в результате а-спирали и (3-слои. Дестабилизирующим фактором пространственной упаковки является наличие в глубине глобулы каких-то групп, потенциально способных образовывать ионные и водородные связи, но реально лишенных партнеров.

При физиологических условиях состояние белка, имеющего нативную трехмерную структуру, термодинамически стабильно, т. е. соответствует минимуму свободной энергии. Информация, необходимая для сворачивания белка в нативную конформацию, заложена в его аминокислотной последовательности. Поэтому в принципе теоретически можно предсказать трехмерную структуру любого белка исходя из его аминокислотной последовательности. Однако предсказание третичной структуры остается нерешенной проблемой молекулярной биологии. Сворачивание молекулы белка из развернутого состояния должно осуществляться единственным путем. Если предположить, что белковая молекула состоит из 50 остатков, каждый из которых может принимать 10 разных конформаций, то общее число возможных конформаций составит 10 50 , и если характерное время молекулярных перестроек составляет 10“ 13 с, то для того, чтобы перепробовать все конформации, потребуется 10 37 с (~ Ю 30 лет). Следовательно, существует направленный путь сворачивания белка.

Стабильность свернутой молекулы белка в водном окружении крайне низка. Основной движущей силой сворачивания является энтропийный гидрофобный эффект, вследствие которого неполярные группы стремятся выйти из водного окружения и оказаться внутри глобулы. Существует и обратный эффект, препятствующий сворачиванию и обусловленный тем, что для свернутой молекулы белка число разрешенных конформаций основной и боковых цепей меньше, чем у развернутой.

Гемоглобин (НЪ) - белок, переносящий кислород от легких к тканям. НЬ локализован в красных кровяных клетках - эритроцитах.

Как уже отмечалось (см. рис. 3.14), гемоглобин состоит из четырех полипептидных цепей, каждая из которых содержит гем (рис. 3.17). Функциональная взаимосвязь этих цепей такова, что присоединение О2 к одному из атомов железа повышает сродство к кислороду у трех других.

Гемоглобины - это целый класс белков, представители которого различаются одним-двумя аминокислотными остатками или их последовательностью. У взрослого человека гемоглобин типа НЬА. Кроме НЬА, существует эмбриональный гемоглобин HbF, исчезающий после рождения. Молекулярная масса обоих гемоглобинов приблизительно одинакова (64 500), они отличаются только последовательностью аминокислотных остатков. Наряду с обычно имеющимися гемоглобинами в организме человека встречаются аномальные HbS, HbG, НЬС, НЬН и т. д. Общность всех гемоглобинов - в способе укладки их полипептидных цепей вокруг большого плоского кольца гема , идентичного для всех, в центре которого находится атом железа (порфириновое кольцо).

Г ем состоит из атомов углерода, азота и водорода, образующих плоское кольцо, называемое порфирином (рис. 3.17). В центре кольца находится атом Fe, связанный с атомами кольца четырьмя координационными связями (из шести возможных). К гему примыкают два остатка гистидина (His). Имидозольная группа гистидина (F-8) связана координационной связью с атомом Fe через пятую координационную связь. Шестая связь служит для соединения с молекулой О2.

Рис. 3.17.

Миоглобин - мышечный белок, переносящий кислород в мышечных клетках. Он состоит из одной полипептидной цепи, содержит только а-спирали, соединенные петлями, и имеет один гем. Аминокислотная последовательность миоглобина отличается от последовательностей a-цепей гемоглобина. Однако третичная структура a-цепей гемоглобина и миоглобина идентична. Общий способ свертывания а-спиралей глобулярных белков называется глобиновым типом сворачивания.

Американские биологи расшифровали эволюционный механизм, позволяющий бактериофагу лямбда в лабораторных экспериментах вырабатывать новый способ заражения бактериальных клеток. Эволюционное новшество возникает в ответ на приобретение бактериями устойчивости к старому способу вирусной атаки, основанному на прикреплении вирусного белка J к бактериальному поверхностному белку LamB. В этой ситуации отбор сначала закрепляет мутации гена J , усиливающие старую функцию. «Платой» за лучшее связывание с LamB становится дестабилизация белка J. В итоге получаются вирусы, у которых при одном и том же геноме белок J может иметь две разные пространственные конфигурации. При этом вирусные частицы с «правильно» свернутым J заражают жертв старым способом, а другие (с таким же геномом, но с «неправильно» свернутым J) делают это по-новому, прикрепляясь к другому поверхностному белку бактерии (OmpF). В дальнейшем оба варианта могут стабилизироваться путем закрепления дополнительных мутаций, что фактически приводит к разделению исходного вируса на два вида. Работа подтверждает старую, но имеющую мало экспериментальных подтверждений идею о том, что новые функции могут развиваться через промежуточный этап дестабилизации фенотипа с последующей стабилизацией («генетической ассимиляцией») удачных ненаследственных отклонений.

Теоретики давно обсуждают возможную роль дестабилизации фенотипа в появлении эволюционных новшеств. Предполагается, что новшества могут возникать по следующей схеме: «исходный стабильный фенотип → дестабилизирующее воздействие (например, резкое изменение среды) → рост негенетической изменчивости → генетическая ассимиляция удачного фенотипа, то есть закрепление мутаций, стабилизирующих тот вариант фенотипа, который оказался адаптивным в новых условиях ». Об этой модели подробно рассказано в новости Дестабилизация развития - путь к эволюционным новшествам («Элементы», 13.07.2009). Идея выглядит логичной, однако прямых экспериментальных подтверждений у нее пока немного (см. ссылки в конце новости).

Американские биологи, работающие с бактериофагом лямбда (см. Lambda phage), пополнили коллекцию подтвержденных примеров действенности данного механизма еще одним экспонатом.

Изучалось эволюционное новшество, систематически возникающее у фага λ в определенных условиях. В норме этот фаг заражает своих жертв, кишечных палочек Escherichia coli , прикрепляясь к поверхностному белку (рецептору) LamB. Однако жертвы могут выработать устойчивость к вирусу путем накопления мутаций, снижающих уровень экспрессии этого рецептора. Количество молекул LamB на поверхности бактериальных клеток уменьшается, и вирусу становится не за что ухватиться.

В присутствии устойчивых бактерий вирусы подвергаются интенсивному отбору на способность как можно эффективнее цепляться за те немногие молекулы LamB, которые еще остались. Отбор последовательно закрепляет 4–7 мутаций в вирусном гене, кодирующем белок J. Этот белок располагается на конце ножки вируса и отвечает за прикрепление к LamB (рис. 1).

Неожиданным образом эти мутации не только повышают прочность связи с LamB, но и придают белку J новую способность - прикрепляться к другому поверхностному белку бактерии, OmpF. Фактически вирус вырабатывает новый способ заражения бактериальных клеток. Такие вирусы успешно заражают бактерий, даже вовсе лишенных LamB (J. R. Meyer et al., 2012. Repeatability and Contingency in the Evolution of a Key Innovation in Phage Lambda).

Недавно было показано, что получившиеся вирусы-генералисты (способные заражать своих жертв двумя способами) могут затем снова специализироваться, то есть утратить один из двух способов заражения, оптимизировав другой. Это может привести к видообразованию (разделению на два вида). Хотя у фагов λ нет полового размножения, у них есть рекомбинация - обмен участками генома между вирусами, заразившими одну и ту же клетку. С точки зрения эволюционных последствий это почти то же самое, что и половое размножение. Оказалось, что адаптация к хозяевам, у которых есть только один из двух рецепторов (LamB или OmpF), ведет к разделению вирусов-генералистов на две специализированные группы, каждая из которых способна заражать только один тип жертв. Такие вирусы уже не могут меняться друг с другом генами, потому что в их геномах закрепляются несовместимые мутации (J. R. Meyer et al., 2016. Ecological speciation of bacteriophage lambda in allopatry and sympatry). Поэтому их вполне можно считать разными видами.

В ходе нового исследования, результаты которого опубликованы в журнале Science , американские вирусологи разобрались в том, каким образом белку J вирусов-генералистов удается совмещать две функции. У клеточных организмов такие эволюционные изменения обычно происходят за счет дупликации гена с последующим разделением функций между копиями. Но у фагов-генералистов ген J не дуплицирован.

Альтернативный механизм связан с дестабилизацией белка. Авторы предположили, что мутации, закрепившиеся в гене J у фагов-генералистов, внесли элемент хаоса в процесс сворачивания кодируемого белка (см. Фолдинг белка). Возможно, белок J у фагов-генералистов может принимать две разные конформации, одна из которых связывается с LamB, а другая - с OmpF.

Дестабилизация пространственной структуры белка часто сопровождается снижением его устойчивости к повышению температуры. Поэтому проверку своей гипотезы ученые начали с оценки выносливости вирусов к перегреву. Для этого они в течение часа выдерживали вирусные частицы с разными генотипами при разных температурах (от 37°С - оптимальной температуры для фага λ до смертельных 55°С) и смотрели, какой процент вирусов сохранит жизнеспособность. В эксперименте использовались генотипы, соответствующие разным этапам изученного ранее эволюционного пути от исходного вируса (связывающегося только с LamB) к вирусу-генералисту. Изучаемые вирусы различались только мутациями в гене J , а весь остальной геном у них был одинаковый.

Результаты подтвердили ожидания исследователей (рис. 2). Выяснилось, что мутации в гене J , которые в ходе адаптации вирусов к жертвам с пониженной экспрессией LamB повышали сродство J к LamB, а затем дали возможность связываться также и с OmpF, попутно снижали термостабильность белка J.

Впрочем, это само по себе еще ни о чем говорит, потому что мутации, меняющие аминокислотные последовательности белков, часто снижают устойчивость белков к перегреву - это дело обычное. Но в данном случае всё оказалась интереснее. Авторы проверили термочувствительность упомянутых выше вирусов - потомков генералистов, которые в ходе дальнейшей эволюции снова стали специалистами, утратив способность прикрепляться к одному из двух рецепторов. У этих вирусов - «вторичных специалистов» в гене J еще больше мутаций по сравнению с исходным вариантом, чем у генералистов. Однако устойчивость к нагреванию у них оказалась такой же высокой, как и у «диких» вирусов. Таким образом, «генерализующие» мутации снизили термостабильность, а «специализирующие» снова ее повысили.

Самый интересный результат был получен, когда авторы проанализировали временну ю динамику разрушения вирусных частиц при оптимальной для них температуре 37°С. В опыте использовали штаммы с максимальной и минимальной термоустойчивостью, то есть вирусы «дикого типа» и генералистов с семью мутациями (этим двум генотипам соответствуют черная и зеленая сплошные линии на рис. 2). Оказалось, что генералисты со временем разрушаются быстрее, чем «дикие» вирусы. Это ожидаемый результат, потому что от менее термоустойчивых вирусов следует ожидать и меньшей устойчивости при оптимальной температуре. Интереснее другое: исследователи обнаружили, что в течение первых двух суток разрушение вирусов дикого типа идет с постоянной скоростью, тогда как генералисты намного быстрее деградируют в первые сутки, чем во вторые (рис. 3).

Но если все вирусные частицы в выборке одинаковы, то они должны разрушаться с постоянной скоростью. Полученный результат говорит о том, то вирусы-генералисты, по-видимому, представлены двумя разными фенотипами, один из которых неустойчив и разрушается быстро (в основном в течение первого дня), а другой - медленно (примерно с той же скоростью, что и «дикие» вирусы). Однако генотип у всех генералистов один и тот же. Стало быть, речь идет о негенетической изменчивости. Скорее всего, дело тут в разных вариантах сворачивания белка J.

Дальнейшие эксперименты дали ряд косвенных подтверждений этому предположению. Удалось показать, что быстро разрушающаяся фракция вирусов-генералистов преимущественно связывается с OmpF, а медленно разрушающаяся - с LamB. Это видно, например, из того, что по мере разрушения вирусных частиц среди вирусов-генералистов остается все меньше способных связываться с OmpF, в то время как доля связывающихся с LamB растет. А если отобрать те вирусы, которые связались с OmpF, то оставшиеся вирусы, во-первых, лучше связываются с LamB, чем исходная смесь, во-вторых, со временем разрушаются медленнее. Дополнительные эксперименты подтвердили, что изменчивость у вирусов-генералистов действительно негенетическая, то есть ненаследственная.

В итоге вырисовалась следующая схема появления эволюционного новшества. В ходе адаптации к жертвам с пониженной экспрессией рецептора LamB отбор стал поддерживать у вирусов такие мутации в гене J , которые позволяли белку J прочнее связываться с LamB. Это достигалось ценой дестабилизации белка J, который в результате стал иногда сворачиваться неправильно. После приобретения четырех таких мутаций (каждая из которых повышала сродство J к LamB) у белка J появился новый вариант сворачивания, который позволял связываться с другим рецептором - OmpF. Белок с новой функцией возник как один из вариантов фенотипа в рамках негенетической изменчивости. При одном и том же геноме часть вирусов теперь могла связываться с OmpF, в то время как другие обладатели того же генотипа связывались с LamB. Так появились вирусы-генералисты. При этом каждая отдельная вирусная частица намного эффективнее связывалась с одним из двух рецепторов, чем с другим. Генерализация произошла на уровне популяции, а не индивида.

В дальнейшем вирусы-генералисты могут снова специализироваться, попав в подходящие условия (то есть получив доступ к жертвам, у которых есть либо только LamB, либо только OmpF). В ходе специализации закрепляются мутации, повышающие вероятность того, что белок J свернется выгодным в данной ситуации образом. В результате белок J снова стабилизируется, то есть начинает сворачиваться только одним способом. При этом восстанавливается также и устойчивость белка (и всего вируса) к повышенной температуре.

Таким образом, найден яркий пример появления новой функции через промежуточный этап, связанный с дестабилизацией фенотипа. Остается неясным, как часто возникают таким способом эволюционные инновации у вирусов и клеточных организмов. Ответ на этот вопрос должны дать дальнейшие исследования.

Белки являются строительным материалом организма и участвуют в процессе метаболизма. Функции белков в организме имеют огромное значение для поддержания жизнедеятельности.

Строение

Белки - биополимеры, состоящие из отдельных звеньев - мономеров, которые называются аминокислотами. Они состоят из карбоксильной (-СООН), аминной (-NH2) группы и радикала. Аминокислоты связываются между собой с помощью пептидной связи (-C(O)NH-), образуя длинную цепочку.

Обязательные химические элементы аминокислот:

  • углерод;
  • водород;
  • азот;
  • кислород.

Рис. 1. Строение белка.

Радикал может включать серу и другие элементы. Отличаются белки не только радикалом, но и количеством карбоксильной и аминной групп. В связи с этим выделяют три типа аминокислот:

  • нейтральные (-СООН и -NH2);
  • основные (-СООН и несколько -NH2);
  • кислые (несколько -СООН и -NH2).

В соответствии с возможностью синтезироваться внутри организма выделяют два вида аминокислот:

ТОП-2 статьи которые читают вместе с этой

  • заменимые - синтезируются в организме;
  • незаменимые - не синтезируются в организме и должны поступать из внешней среды.

Известно около 200 аминокислот. Однако в построении белков участвуют только 20.

Синтез

Биосинтез белков происходит на рибосомах эндоплазматической сети. Это сложный процесс, состоящий из двух стадий:

  • образование полипептидной цепи;
  • модификация белка.

Синтез полипептидной сети происходит с помощью матричной и транспортной РНК. Этот процесс называется трансляцией. Вторая стадия включает «работу над ошибками». Части синтезированного белка заменяются, удаляются или удлиняются.

Рис. 2. Синтез белка.

Функции

Биологические функции белков представлены в таблице.

Функция

Описание

Примеры

Транспортная

Переносят химические элементы к клеткам и обратно во внешнюю среду

Гемоглобин переносит кислород и углекислый газ, транскортин - гормон надпочечников в кровь

Двигательная

Помогают сокращаться мышцам многоклеточных животных

Актин, миозин

Структурная

Обеспечивают прочность тканей и клеточных структур

Коллаген, фиброин, липопротеины

Строительная

Участвуют в образовании тканей, мембран, клеточных стенок. Составляют мышцы, волосы, сухожилия

Эластин, кератин

Сигнальная

Передают информацию между клетками, тканями, органами

Цитокины

Ферментативная или каталитическая

Большинство ферментов в организме животных и человека имеют белковое происхождение. Они являются катализатором многих биохимических реакций (ускоряют или замедляют)

Ферменты

Регуляторная или гормональная

Гормоны белкового происхождения контролируют и регулируют процессы метаболизма

Инсулин, лютропин, тиротропин

Генно-регуляторная

Регулируют функции нуклеиновых кислот при переносе генетической информации

Гистоны регулируют репликацию и транскрипцию ДНК

Энергетическая

Используется как дополнительный источник энергии. При распаде 1 г высвобождается 17,6 кДж

Распадаются после исчерпывания других источников энергии - углеводов и жиров

Защитная

Специфичные белки - антитела - предохраняют организм от заражения, уничтожая чужеродные частицы. Особые белки сворачивают кровь, останавливая кровотечение

Иммуноглобулины, фибриноген, тромбин

Запасающая

Запасаются для питания клеток. Удерживают необходимые организму вещества

Ферритин удерживает железо, казеин, глютен, альбумин запасаются в организме

Рецепторная

Удерживают различные регуляторы (гормоны, медиаторы) на поверхности или внутри клетки

Глюкагоновый рецептор, протеинкиназа

Белки могут оказывать отравляющее и обезвреживающее действие. Например, палочка ботулизма выделяет токсин белкового происхождения, а белок альбумин связывает тяжёлые металлы.

Ферменты

Стоит сказать кратко о каталитической функции белков. Ферменты или энзимы выделяют в особую группу белков. Они осуществляют катализ - ускорение протекания химической реакции.
В соответствии со строением ферменты могут быть:

  • простыми - содержат только аминокислотные остатки;
  • сложными - помимо белкового мономерного остатка включают небелковые структуры, которые называются кофактором (витамины, катионы, анионы).

Молекулы ферментов имеют активную часть (активный центр), связывающую белок с веществом - субстратом. Каждый фермент «узнаёт» определённый субстрат и связывается именно с ним. Активный центр обычно представляет собой «карман», в который попадает субстрат.

Связывание активного центра и субстрата описывается моделью индуцированного соответствия (модель «рука-перчатка»). Модель показывает, что фермент «подстраивается» под субстрат. Благодаря изменению структуры снижаются энергия и сопротивление субстрата, что помогает ферменту легче перенести его на продукт.

Рис. 3. Модель «рука-перчатка».

Активность ферментов зависит от нескольких факторов:

  • температуры;
  • концентрации фермента и субстрата;
  • кислотности.

Различают 6 классов ферментов, каждый из которых взаимодействует с определёнными веществами. Например, трансферазы переносят фосфатную группу от одного вещества к другому.

Ферменты могут ускорять реакцию в 1000 раз.

Что мы узнали?

Выяснили, какие функции выполняют белки в клетке, как они устроены и как синтезируются. Белки представляют собой полимерные цепочки, состоящие из аминокислот. Всего известно 200 аминокислот, но белки могут образовывать только 20. Белковые полимеры синтезируются на рибосомах. Белки выполняют важные функции в организме: переносят вещества, ускоряют биохимические реакции, контролируют процессы, происходящие в организме. Ферменты связывают субстрат и целенаправленно переносят его на вещества, ускоряя реакции в 100-1000 раз.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 367.

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»



Рассказать друзьям